

 D6.1 – Reference Architecture of the Assurance Framework Toolkit

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement no 732319

Page 1 of 38

D6.1 – Reference Architecture of the Assurance Framework Toolkit

Security Assurance Framework for

Networked Vehicular Technology

Abstract

SAFERtec proposes a flexible and efficient assurance framework for security and trustworthiness

of Connected Vehicles and Vehicle-to-I (V2I) communications aiming at improving the cyber-

physical security ecosystem of “connected vehicles” in Europe. The project will deliver innovative

techniques, development methods and testing models for efficient assurance of security, safety

and data privacy of ICT related to Connected Vehicles and V2I systems, with increased

connectivity of automotive ICT systems, consumer electronics technologies and telematics,

services and integration with 3rd party components and applications. The cornerstone of

SAFERtec is to make assurance of security, safety and privacy aspects for Connected Vehicles,

measurable, visible and controllable by stakeholders and thus enhancing confidence and trust in

Connected Vehicles.

 D6.1 – Reference Architecture of the Assurance Framework Toolkit

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement no 732319

Page 2 of 38

DX.X & Title: D6.1 – Reference Architecture of the Assurance Framework Toolkit

Work package: WP6

Task: T6.1 Reference Architecture of the Assurance Framework Toolkit (AFT)

Due Date: 30 April 2019

Dissemination Level: PU

Deliverable Type: R

Authoring and review process information

EDITOR

Angelos Stamou/ICCS

DATE

10-09-2019

21-11-2019

17 -07-2020

CONTRIBUTORS

Panagiotis Pantazopoulos/ICCS

DATE

25-11-2019

08-07-2020

23-07-2020

REVIEWED BY

Silvia Capato/Swarco

Kostas Maliatsos/UPRC

Person name / partner short name

DATE

04-12-2019

09-12-2019

Day-Month-Year

LEGAL & ETHICAL ISSUES COMMITTEE REVIEW REQUIRED?

NO

 D6.1 – Reference Architecture of the Assurance Framework Toolkit

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement no 732319

Page 3 of 38

Document/Revision history

Version Date Partner Description

V0.1 07/01/2019 ICCS Table of Contents - First draft

V0.2 07/02/2019 ICCS Inputs to Section 3

V0.3 11/03/2019 ICCS Updates of Section 4 structure, formatting, inputs to

Section 1

V0.4 20/04/2019 ICCS Edits in Sections 2 and 4, addition of figures

V0.5 04/05/2019 ICCS Update of sub-sections under section 4

V0.6 10/09/2019 ICCS Update of the architecture to match the SAFERtec

assurance framework

V0.7 25/11/2019 ICCS Update of the architecture in line with comments (from

the consortium experts) on an online draft-instance of

the toolkit

V0.8 04/12/2019 Swarco Internal review comments

V0.9 09/12/2019 UPRC Internal review comments

V1.0 11/12/2019 ICCS Final version

V1.1 27/07/2020 ICCS Revised to meet the review comments. The updates

amount to:

• Updates to highlight how the SAFERtec

framework work and the relevant updates

(compared to the original plan) affect the AFT

design (Section 1)

• Basic roles and functionality have been more

clearly described (Section 2.1, Figure 1)

• Subsection 2.4 presents a systematic

description of the proposed architecture in line

with the Rational Unified Process1

methodology. Relevant references added.

• The new Section 6 clarifies some welcome AFT

features (interoperability, modularity,

extensibility and computational efficiency)

1 https://www.sciencedirect.com/topics/computer-science/rational-unified-process

https://www.sciencedirect.com/topics/computer-science/rational-unified-process

 D6.1 – Reference Architecture of the Assurance Framework Toolkit

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement no 732319

Page 4 of 38

Table of Contents
Acronyms and abbreviations .. 7

Executive Summary .. 9

1 Introduction .. 10

1.1 Purpose of the Document ... 11

1.2 Intended readership ... 11

1.3 Inputs from other projects .. 12

1.4 Relationship with other SAFERtec deliverables .. 12

2 Conceptual Architecture of the AFT ... 13

2.1 Uses Cases View .. 13

2.1.1 User Roles .. 14

2.2 Main modules ... 16

2.2.1 Editor .. 16

2.2.2 Composer ... 16

2.3 Interfaces .. 16

2.3.1 Single Page Application .. 16

2.4 Description under a Logical View .. 16

3 Technical Requirements .. 18

3.1 Adaptability ... 18

3.2 Auditability .. 18

3.3 Backup ... 19

3.4 Deployment... 19

3.5 Documentation ... 19

3.6 Extensibility ... 19

3.7 Interoperability ... 19

3.8 Maintainability .. 20

3.9 Performance ... 20

3.10 Reliability ... 20

3.11 Scalability .. 20

3.12 Security ... 20

3.13 Testability .. 20

4 Technology enablers and tools .. 21

4.1 Available solutions and guidelines .. 21

 D6.1 – Reference Architecture of the Assurance Framework Toolkit

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement no 732319

Page 5 of 38

4.2 Single Page Application ... 21

4.3 Front end ... 22

4.3.1 The JavaScript ecosystem .. 22

4.3.2 The Angular Application Platform .. 23

4.4 Back end .. 23

4.4.1 .NET Core.. 23

4.4.2 PostgreSQL ... 24

5 The proposed AFT architecture .. 25

5.1 Front-End .. 25

5.2 Back-End .. 25

5.3 Action Example ... 26

5.4 Use Cases .. 27

5.5 Entities .. 29

6 Analysis of expected AFT features .. 31

6.1 AFT Interoperability features .. 31

6.2 AFT Modularity features ... 32

6.3 AFT Extensibility features .. 32

6.4 AFT Computational Efficiency features ... 33

7 Conclusions ... 34

References ... 35

Appendix A - Potential Extensions .. 36

Appendix B - Snapshots of the Toolkit Skeleton .. 37

 D6.1 – Reference Architecture of the Assurance Framework Toolkit

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement no 732319

Page 6 of 38

Table of Figures

Figure 1: Basic AFT roles and supported functionality (Use Cases) of the toolkit 14

Figure 2: The SPA paradigm .. 22

Figure 3: Basic Angular Concepts .. 25

Figure 4: The ASP.NET pipeline ... 26

Figure 5: The AFT Stack ... 26

Figure 6: A Partial Example Implementation .. 27

Figure 7: The main entities and their relations (E-R diagram) in the AFT database 30

Figure 8 Showcasing the AFT interoperability .. 31

Figure 9 AFT modularity along horizontal axes eases its deployment across machines (on the right) 32

Figure 10 AFT can support any Common Criteria evaluation class, if extended 33

List of Tables

Table 1: List of Abbreviations .. 8

 D6.1 – Reference Architecture of the Assurance Framework Toolkit

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement no 732319

Page 7 of 38

Acronyms and abbreviations

Abbreviation Description

AFT Assurance Framework Toolkit

AOP OPerational Assurance (evaluation class)

API Application Programming Interface

AJAX Asynchronous JavaScript and XML

ANSI American National Standards Institute

CC Common Criteria

CVS Connected Vehicle System

DOM Document Object Model

ECMA European Computer Manufacturers Association

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

IETF Internet Engineering Task Force

IDE Integrated development environment

ISO International Organization for Standardization

JWT JSON Web Token

MVC Model–View–Controller

NPM Node Package Manager

ORDBMS Object-relational Database Management System

PP Protection profile

RUP Rational Unified Process

SFR Security Functional Requirement

SPA Single Page Application

ST Security Target

SW Software

ToE Target of Evaluation

TSFI TOE Security Function Interface

 D6.1 – Reference Architecture of the Assurance Framework Toolkit

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement no 732319

Page 8 of 38

UI User Interface

URL Uniform Resource Locator

V2I Vehicle-to-Infrastructure

VB Visual Basic

W3C World Wide Web Consortium

WWW World Wide Web

XML Extensible Markup Language

Table 1: List of Abbreviations

 D6.1 – Reference Architecture of the Assurance Framework Toolkit

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement no 732319

Page 9 of 38

Executive Summary

This document presents the reference architecture of the SAFERtec Assurance Framework

Toolkit (AFT). First, it goes through a comprehensive analysis of the involved technical requirements

that relate to a broad set of needs. Essentially, the proposed architecture (described also from a

Rational Unified Process standpoint [13]) can support the implementation of a toolkit that would be

used to help with the development of an automotive product by supporting (in line with the

SAFERtec Assurance Framework) the definition of the Security Profile/Target [1] for that product

(ToE).

The derived architecture retains a certain level of generality to support quick adaption to the

Security Assurance Framework (expected) outcome and at the same time serve as the basis for the

software development of the toolkit. Certain updates of the architecture have been undertaken to

align with the feedback received by considering a skeleton instance of the architecture2.

The proposed architecture designed in line with well-known software standards will lay the ground

to the implementation and testing of the SAFERtec AFT that facilitates the efficient introduction of

security assurance arguments in the V2X automotive setting.

2 This has been developed and released for testing purposes under the URL : https://safertec.iccs.gr/

https://safertec.iccs.gr/

 D6.1 – Reference Architecture of the Assurance Framework Toolkit

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement no 732319

Page 10 of 38

1 Introduction

 One of the most interesting outputs of SAFERtec amounts to the Assurance Framework

Toolkit (AFT). The toolkit aims to implement the basic principles of the SAFERtec security assurance

framework [2] i.e., to “transform” the structured way of obtaining security guarantees in a V2I

setting into a robust and easy-to-use WWW toolkit. Its design principles are presented herein.

The document adopts a top-down approach. It first identifies some high-level technology-

independent requirements (that point to the toolkit’s technology needs) and then describes the

general AFT functionality. The document sheds some further insights on the proposed design by

relying on the Rational Unified Process (RUP) to prescribe the intended reference architecture

(pointing to relevant best practices) [13].

A broad set of technical requirements are considered in order to fulfill the aforementioned needs.

Subsequently, the document details the employed software tools along with the motivations behind

each choice with the AFT front- and back- end parts considered separately.

The AFT architecture as well as the subsequent implementation task adhere to a number of well-

established software standards:

• HyperText Markup Language (IETF, ISO, W3C) or HTTP, is a language which the language in

which web pages are authored. Compliance with them ensures cross-browser compatibility.

• ECMAScript (ECMA, ISO) is the standard javascript specification [3] which will help make the

toolkit’s dynamic content compatible.

• Cascading Style Sheets (CSS) is a language specification [4] which provides browsers a

standardized way to present content.

• JavaScript Object Notation (IETF, ECMA) is a widely-used standard way [5] to exchange

textual information across systems and heavily used in AJAX applications.

• C# Language Specification (ECMA, ISO) is the specification for the framework language which

will be used on the server-side component of the application.

• Structured Query Language (ANSI, ISO) is the language that most traditional databases

implement as a means of interaction.

The document showcases the architecture along with the major modules, while providing insights on

the corresponding interfaces. As the SAFERtec Assurance Framework is currently under update

relying on on-going testing activities, emphasis is placed on the high-level software design

(description) which can later be shaped to fit any possible changes. This provides the opportunity to

make implementation decisions at a later stage while staying in line with the (intended) final

framework output.

 D6.1 – Reference Architecture of the Assurance Framework Toolkit

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement no 732319

Page 11 of 38

SAFERtec has chosen to build its proposal on-top of the most credible and Internationally recognised

security assurance standard, the Common Criteria (ISO/IEC 15408) [1]. Several reasons justify this

decision, the highest possible level of the achievable assurance as well as its recognised credibility

being some of the most important ones; importantly, those reasons are becoming (pointing to an

appropriate SAFERtec decision) in view of ever-increasing automation level of connected vehicles.

The considered standard and accordingly the SAFERtec proposal (introduced in WP3) suggest a rich

spectrum of evaluation tasks over the evaluated system (i.e., Target of Evaluation). SAFERtec seeks

to considerably enhance the Common Criteria (CC) introducing a tailored-made framework of direct

and cost-efficient applicability to the connected vehicles paradigm. The Common Criteria processes

are therefore respected; for instance, the assurance level of any evaluation is not ‘computable’ (i.e.

cannot be software-generated) but predefined by the standard, essentially determined by the depth

of the evaluation tasks the standard suggests. This renders the functionality of the (originally

envisioned) inference engine, not relevant. At the same time, carefully designed contributions aim to

ensure the SAFERtec cost-efficiency: an innovative risk analysis to drive the requirements elicitation,

proposals of additional evaluation classes (for devising system-level evaluation arguments), a

dedicated knowledge base fed by Connected Vehicle Protection Profiles and finally, custom tools for

supporting in an online-fashion the gathering/management of SAFERtec (or CC) evaluation data. AFT

has been designed to serve this last purpose.

Along this line, the AFT design includes the necessary online functionality to facilitate/ease the

gathering, organization, management of SAFERtec (or CC) evaluation data as well as the efficient

compilation of the relevant outputs (e.g., Security Targets, Architecture specifications of the ToE). As

such, all AFT software modules (e.g., knowledge base) have been designed (and subsequently

developed) to meet the herein presented requirements.

1.1 Purpose of the Document

The document seeks to describe the reference architecture of the SAFERtec Assurance Framework

Toolkit. This work will serve as the basis for the AFT implementation that follows.

1.2 Intended readership

Besides the project reviewers, this deliverable is addressed to any interested reader as it is of Public

dissemination level.

 D6.1 – Reference Architecture of the Assurance Framework Toolkit

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement no 732319

Page 12 of 38

1.3 Inputs from other projects

No input from other projects was considered during the compilation of this deliverable.

1.4 Relationship with other SAFERtec deliverables

There is no direct dependency of the content included in this document on past SAFERtec

deliverables. However, the architecture and the relevant SW technologies presented here will guide

the implementation effort which will be reported in subsequent WP6 SAFERtec deliverables. Finally,

the results of WP3 (mainly those that appear in D3.2) so far have been considered in the introduced

AFT architecture.

 D6.1 – Reference Architecture of the Assurance Framework Toolkit

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement no 732319

Page 13 of 38

2 Conceptual Architecture of the AFT

SAFERtec develops and provides an Assurance Framework Toolkit (AFT) for Connected Vehicles,
which will be realized as a modular software platform. AFT is enabled to host the identified CVS
assets, the result of the SAFERtec risk analysis (expressed as threats, assumptions and security
objectives) and the corresponding security functional requirements.

In a nutshell, the toolkit will mainly enable a structured/automated way (to help the product
developer) compose an ST (PP) for an automotive ToE and address the issues imposed by the ST
(PP). Those structured forms of (security assurance) evaluation data will be requested by a relevant
CC evaluator and would otherwise come at a high time/resources cost for the ToE developer. AFT
seeks to facilitate through its online functionality the cost-efficient compilation of the required data.
Further extensions regarding the support of other security evaluation tasks are discussed in the
Appendix A - Potential Extensions.

Following the Rational Unified Process [13] we provide the presentation of the AFT (software design

and) reference architecture under a number of abstractions infusing user roles, best practices,

standards and available (technology) tools. A software architecture through (concurrent)

abstractions called views, each of which addresses a specific set of concerns.

2.1 Uses Cases View

Currently the Toolkit has been designed and implemented to support a basic set of use-cases, as

shown in the following diagram (Figure 1). The leftmost ellipsis shapes refer to the main use-case of

each role that are further broken down to details on the rightmost set.

Later in this document, the careful design and generality of the involved modules that effectively

enable the extensibility of the current architecture will be shown.

 D6.1 – Reference Architecture of the Assurance Framework Toolkit

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement no 732319

Page 14 of 38

Figure 1: Basic AFT roles and supported functionality (Use Cases) of the toolkit

Each user role is linked to the main use-cases through plain arrows. Further dotted links point to the

detailed functionality of each use-case. Two tags on the links have been used to characterize the

supported functionality: “include” marks the scope of each use-case and “use” point to the usage of

some functionality related to another use-case.

Next, we discuss the two identified roles of the AFT user (shown in the left part of Figure 1) and the

expected functionality that the AFT architecture implements.

2.1.1 User Roles

AFT has been designed with two roles of users: one to recognize and support the certified expert

user allowing for full access to the (internal parts of the)’ AFT. The second one corresponds to the

 D6.1 – Reference Architecture of the Assurance Framework Toolkit

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement no 732319

Page 15 of 38

typical user and allow him to operate the toolkit, retrieve information and prepare the evaluation

input data required for security assurance evaluation of automotive products. These two share a

common set of actions like logging in to the application, searching and viewing the data.

• Expert. The expert user is the one who can define entities and relations in the Toolkit and

make them available to developers that constitute the ‘common’ users of the AFT.

• Developer. The developer user is the main (typical) audience of the Toolkit. He will rely on

the AFT operation in order to use/exploit the information curated by the expert; thus, he will

be assisted to efficiently3 introduce security evaluation criteria for his automotive product

(ToE) in line with the SAFERtec framework.

2.1.2 Use Cases

In what follows we provide a brief explanation of the use cases presented in the diagram of Figure 1.

• Login. The user is authenticated using a username and a password. This allows for

subsequent authorization.

• View Entities. The user can browse previously entered entities, filter them by category

and/or partial text.

• View Security Targets. The user can browse previously entered security targets and filter

them by partial text.

• Edit Entities. The expert user can edit entities. This includes attributes like title, description

and category. The user can also create and delete entities as well as link them together

according to their type.

• Edit Security Targets. The expert user can edit security targets. This includes all sections of

the security target as defined by the Common Criteria standard. The expert user can also

create and delete security targets as well as attach entities to the security target depending

on the security target product.

• [extension to] Create Development Class Diagrams. The developer can use a graphical

environment to provide the ToE details in terms of functional specifications required for the

ADV evaluation class.

• [extension to] Create Tests. The developer can rely on the AFT entities to define test cases

in the context of the ATE evaluation class.

As AFT can be extended (see Appendix A - Potential Extensions), the above list will be eventually

extended i.e., see the last two bullets, to cover the new functionality.

3 The efficiency of the SAFERtec approach (compared to the typical CC approach) both in terms of time and
cost will be comprehensively evaluated in the WP5 deliverables.

 D6.1 – Reference Architecture of the Assurance Framework Toolkit

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement no 732319

Page 16 of 38

2.2 Main modules

The toolkit consists of two main functionalities represented by two conceptual modules i.e., the

editor and the composer module.

2.2.1 Editor

The first one allows the expert user to define the involved entities (e.g., a security assumption

relevant for the considered product/ToE) with as much detail as required. Those entities are enabled

to correspond to the notions described in the Common Criteria framework [1].

2.2.2 Composer

The composer allows the product developer to browse the entities created by the expert user and

utilize them in order to be assisted in a number of security evaluation tasks (e.g., compose a Security

Target for an automotive product of interest).

2.3 Interfaces

2.3.1 Single Page Application

The users may interact with the Toolkit relying on one interface, the Single Page Application. This

provides a unified access to the application. The advantages of the approach are detailed in Section

4.2.

2.4 Description under a Logical View

In what follows we elaborate the details of a Logical View description [13] identifying various

involved layers. For each layer we briefly discuss the relevant technical choices (e.g., employed SW

services), standards and tools. We adopt an easy-to-follow presentation using tables and provide

further references where needed.

2.4.1 User Interface Layer

Area Products/Services/Components

Layout No formal guidelines but the toolkit UI should follow a
responsive and clean design.

Usability No formal guidelines but the toolkit should be simple
and prompt to user interaction.

 D6.1 – Reference Architecture of the Assurance Framework Toolkit

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement no 732319

Page 17 of 38

Standards Valid HTML, CSS and Javascript must be produced
which should render correctly on all major up-to-date
desktop browsers.

Construction Tools

1. Languages 1. Typescript for UI logic
2. HTML for layout structure
3. CSS for presentation

2. IDE Visual Studio Community Edition 2017/2019

3. Information Stream 1. HTML, CSS and Javascript for initial loading of
app logic and data

2. JSON for subsequent data loading as well as
interaction

4. Design Strategies Standard Angular MVVM project structure.

5. Package Manager npm [10]

Components

1. Authorization JWT included in the requests

2. Transpiler TSC compiler

2.4.2 Application Logic Layer

Components

1. Languages 1. C# (.NET Core) [11]
2. SQL (auto generated)

2. IDE Visual Studio Community Edition 2017/2019

3. Package Manager NuGet

Service Components

1. Compression GZIP

2. Database Access EF Core

3. Security 1. HTTPS for transport
2. HSTS policy

Pattern Usage for specific scenarios

The application interface requires
organizing into resources in accordance
with REST practices

Model-View-Controller pattern or MVC allows for a
clean design where the resources are grouped by class
and the actions by method.

Software components must be modular
and some unit testing will be required

Dependency Injection allows for testing by providing
resources on class instantiation

Separation is required between instances

of the application servicing different

requests

Scoped Services initialize resources per request

ensuring efficient use and separation of concerns

Some resources are not constantly
required

Singleton Services are ideal for providing functionality
to the application as a whole

 D6.1 – Reference Architecture of the Assurance Framework Toolkit

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement no 732319

Page 18 of 38

2.4.3 Middleware Layer

Area Products/Services/Components

Reverse Proxy Nginx [15]

Application Server Kestrel [16]

Runtime Common Language Runtime

2.4.4 System Software Layer

Area Products/Services/Components

Operating Systems Linux

RDBMS PostgreSQL [17]

Package Management 1. NuGet
2. npm [10]

3 Technical Requirements

Technical requirements, also known as non-functional requirements, describe the behaviour of the

toolkit while AFT performs its functions. Those requirements need to be met in most of complex

software systems [6] in order to ensure a number of welcome characteristics. A certain set of them,

discussed below, are even more relevant for AFT in order to appropriately reproduce the SAFERtec

framework.

3.1 Adaptability

The Framework is subject to change especially since cyber-security is a moving target. The AFT

design should anticipate that and be able to accommodate any modifications with minimal cost. This

can be achieved by using a modular architecture and enforcing clean abstractions. This way, clear

interfaces are easily implemented in new components and fitted in an existing system. Towards the

same end, any rigid and hardcoded functionality should be avoided.

3.2 Auditability

Obscurity in complex systems is all too common. Keeping operations easy to trace helps keep the

project compliant with requirements, helps detect flaws in design and operation, supports security

 D6.1 – Reference Architecture of the Assurance Framework Toolkit

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement no 732319

Page 19 of 38

and provides accountability. The system should support logging to ensure traceability and

transparency without sacrificing performance. Obviously, sane data retention principles (needed to

comply with Member State/EU regulations or recover business data in case of accidents, see [7])

must be followed with regards to logging.

3.3 Backup

Backup provisions are a prominent consideration of almost every software system and come with a

straightforward rationale. The Toolkit is no different in this sense. Reliable and robust backup

mechanisms must be in place and provide the means for disaster recovery.

3.4 Deployment

Easy software deployment is extremely useful yet somewhat overlooked. A good deployment

mechanism allows for a short development to deployment cycle which brings a number of benefits

such as timely updates, fast bug fixing, easy scaling and rapid recovery. For these reasons the Toolkit

should be easily deployed with minimal downtime.

3.5 Documentation

Software documentation is also an essential component of every system. However, reliable, concise

and up-to-date documentation is difficult and time consuming to prepare and maintain. Given how

pivotal it is to ensure correctness, proper maintenance and untroubled development, it should be

self-evident that good documentation must accompany the Toolkit.

3.6 Extensibility

New requirements are commonplace in involved systems. Oftentimes they are difficult to become

apparent before the actual development starts. To compensate for this eventuality, the Toolkit must

be extensible in order to incorporate new functionality in its existing instance. Modularity also helps

along the same lines by providing clean starting points to add new components.

3.7 Interoperability

The Toolkit needs to be enabled to expose all included functionality to third party systems. A well-

defined and documented API is essential for this. The corresponding interface should be easy to

understand and develop in order to encourage its integration with other systems.

 D6.1 – Reference Architecture of the Assurance Framework Toolkit

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement no 732319

Page 20 of 38

3.8 Maintainability

The (single) greatest cost in a software product’s lifecycle comes from maintenance. The Toolkit

design must be easy to understand, correct and adapt, if need be. This reduces the complexity of the

maintenance task as well as the time required.

3.9 Performance

Performance is important since sluggish systems tend to go unused and are a source of frustration to

users. Thresholds are difficult to define with regards to both time and concurrency and are heavily

dependent on the type, purpose and intended audience of the system. Care must be taken so that

the need for (high) performance does not compromise any other requirements.

3.10 Reliability

The Toolkit must perform all functions reliably, without fail or errors regardless of the involved

complexity. This means that its design must be robust and defend against input or system faults.

Since security assurance is closely linked to trust this requirement is especially relevant to the

Toolkit.

3.11 Scalability

Even though it is hard to anticipate actual usage-volume, the design can cope with increased

demands and provides the capability for a future scale-up in terms of the supported features and

number of users. This is achieved with built-in vertical scaling arrangements as well as a plan for

more profound changes in the employed technologies using a proper modular design.

3.12 Security

All aspects of security are of particular interest and importance to the Toolkit. All users should be

authenticated, communication should take place over encrypted channels, data must be safely

stored and the system must be always available, within reason.

3.13 Testability

Testability ensures that parts of the Toolkit software can be tested in isolation or in combination.

This can be done by adopting a coding style that allows for testable components, such as

dependency injection [8], and by writing adequate tests (e.g., unit testing) to cover as much of the

functionality as possible.

 D6.1 – Reference Architecture of the Assurance Framework Toolkit

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement no 732319

Page 21 of 38

4 Technology enablers and tools

4.1 Available solutions and guidelines

Numerous approaches could be taken to develop the AFT. What follows is a non-exhaustive list of

possibilities along with a brief justification for their rejection.

• A native application is a binary which runs on a host computer. It was rejected due to its

difficulty in updating and supporting collaboration between users.

• A mobile application is easier to update but constrains the users with regards to the device

they can use and also requires extra effort due to the diversity between mobile platforms.

• A traditional web application may be easy to update and used for collaboration across

different devices. However, server-side rendering [9] (i.e., the server’s response to the

browser call is the HTML description of the page which is ready to be rendered) suffers from

some shortcomings like rigidity and higher hardware requirements.

4.2 Single Page Application

Our choice is to rely on a Single-Page Application4 approach which has recently become very

popular. Such applications offer a number of benefits which are very relevant to the Toolkit:

• They have distinct client and server components. The Toolkit then will have a clear

separation between user interface and business logic thus ensuring modularity

(Requirement 3.1 Adaptability, 3.6 Extensibility, 3.11 Scalability) and testability

(Requirement 3.13 Testability).

• Due to their popularity, there are ample technologies and toolchains which are used to

support the SPAs. Thus, the Toolkit implementation process will benefit from investing effort

on the actual development (rather than set-up and/or configuration tasks).

• All communication between client and server code occurs with AJAX calls. As follows, the

Toolkit will have a ready Machine-to-Machine interface (Requirement 3.1 Adaptability)

ready without any extra effort.

A single-page application works by first delivering the web page along with all functionality in the

initial browser request (see Figure 2). After that initial load the page updates itself leveraging small

asynchronous requests to the web server (which improves performance, i.e. Requirement 3.9

Performance).

4 https://en.wikipedia.org/wiki/Single-page_application

https://en.wikipedia.org/wiki/Single-page_application

 D6.1 – Reference Architecture of the Assurance Framework Toolkit

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement no 732319

Page 22 of 38

Figure 2: The SPA paradigm

The benefits of such an approach are multiple. This approach enforces design modularity as there is

a clearly defined interface between client and server code. It also reduces server load as more

functionality takes place on the client machine. Also, after a short wait during the initial load, the

user experiences a significant performance improvement (Requirement 3.9 Performance). Finally, as

with all web applications, SPA’s can be used by all browser-equipped devices (Requirement 3.7

Interoperability).

4.3 Front end

In what follows the AFT front-end functionality along with relevant software modules are described.

4.3.1 The JavaScript ecosystem

The JavaScript programming language was created in order to enable interactive web pages. It has

since grown-out of web browsers and now powers almost all kinds of applications. It enjoys wide

deployment due to its ease of use and its relevance to modern web development. It has been

standardised in ECMAScript [3] and implemented in various environments most notably browsers.

The Node.js run-time environment is a non-browser implementation. It is used for web hosting,

server-side scripting as well as development. The node.js package manager or NPM [10] is a tool for

managing dependencies in software projects and is responsible for the great wealth in JavaScript

libraries which drives the modern web.

The Typescript language is a package created to improve modern applications. It is a superset of

JavaScript and provides type annotations, type checking, classes, anonymous functions and many

other features which are usually absent from scripting languages. It compiles to JavaScript and can

run on most modern browsers and other environments.

 D6.1 – Reference Architecture of the Assurance Framework Toolkit

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement no 732319

Page 23 of 38

4.3.2 The Angular Application Platform

Angular is an application framework [12] which can be deployed in multiple systems and makes

heavy use of Typescript. It has features such as data binding, templates, dependency injection and

tooling in addition to all features provided by the language to facilitate development best practices.

It thus leads to better applications with modularity (Requirement 3.1 Adaptability, 3.6 Extensibility,

3.11 Scalability), extendibility (Requirement 3.6 Extensibility) and testability (Requirement 3.13

Testability) already provided for.

An Angular application contains modules which in turn consist of components. Components contain

application logic and templates which are used to create views as well as binding mark-up which link

application data to Document Object Module (DOM) elements. Services also contain application

logic shared between components by injection. One such service is the Angular router which

constructs a navigation tree for the application in accordance to browser expectations.

4.4 Back end

In what follows the AFT back-end functionality along with relevant software modules are described.

4.4.1 .NET Core

Dot Net Core [11] is a multi-platform open-source software framework. It contains a compiler and a

runtime environment as well as a package manager for developing and running C#, F# and VB

applications. It supports console and web applications but not native user interfaces. The platform

comes with built-in tooling to support the development process.

Specifically, for web applications the platform provides the ASP.NET Framework. It can be used both

for web UI and web API modular applications with a focus on clean design and testability

(Requirement 3.13 Testability). It interfaces well with all single-page application frameworks due to

the Model-View-Controller component which is complete and well-implemented.

Another part of the .NET stack is the Entity Framework Core, an object-relational mapping library.

Besides the built-in database providers there are others available for most popular databases. EF

Core allows for both mappings on an existing database as well as table generation from existing

models. The latter approach allows for easier integration into applications (Requirement 3.1

Adaptability) and also promotes testing (Requirement 3.13 Testability).

 D6.1 – Reference Architecture of the Assurance Framework Toolkit

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement no 732319

Page 24 of 38

4.4.2 PostgreSQL

PostgreSQL is a well-known and widely used open-source, multi-platform ORDBMS focused on

stability and correctness [17]. In addition to the usual database features it also supports many

advanced ones. It is not supported in EF Core by default but there are stable packages which allow

for an almost seamless integration. In all it provides for a robust storage option (Requirement 3.12

Security).

 D6.1 – Reference Architecture of the Assurance Framework Toolkit

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement no 732319

Page 25 of 38

5 The proposed AFT architecture

5.1 Front-End

The front-end component is a composition of modules; the root module contains (numerous)

feature modules resulting in a tree-like structure. The basic module architecture for the AFT front-

end is shown in Figure 3. The module contains a template which describes the view and provides a

two-ways binding to the component which in turn serves as the host for the application data and

logic. Thanks to this binding any update in the underlying data is automatically reflected in the view

and vice versa. Directives are instructions (i.e., a way to inject program logic) given to the templates

to manipulate the view in specific ways. Services are reusable components which don’t contain any

view logic and can be injected to any components as required (e.g., import child components into

where needed).

Figure 3: Basic Angular Concepts

The AFT front-end design adopts principles coming from the Angular platform for desktop web

applications development, detailed in [12].

5.2 Back-End

The back-end will implement a Model-View-Controller (MVC) pattern. Communication with the

client will be achieved by means of a RESTful interface. Requests arriving to the endpoint will be

processed by the web framework’s pipeline (see Figure 4). After the request arrives it is routed to

the appropriate controller. A series of discrete steps produces the appropriate response to be sent

back to the client. This process can be further customized by using filters between the different

stages.

 D6.1 – Reference Architecture of the Assurance Framework Toolkit

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement no 732319

Page 26 of 38

Figure 4: The ASP.NET pipeline

The backend will also feature several distinct layers. The core functionality will be contained in the

domain layer where it can be tested and verified independently (see Figure 5). This will lead to a

solid and extendable implementation (Requirement 3.6 Extensibility). The object-relational-mapping

will handle all saving and retrieving of information from the database and the domain layer will be

free of database access logic.

Figure 5: The AFT Stack

5.3 Action Example

This is an example of a partial implementation (see Figure 6). AuthController is responsible for

authenticating the users and inherits a number of attributes from the Controller which is a

framework class. The AuthController is then used to create the corresponding interface endpoint.

The controller uses an interface to the user data and a cryptographic service (Requirement 3.12

Security) set up during the application start-up. Interfaces are very useful in this pattern because

they provide inversion of control between the classes. CryptoService makes use of interfaces as well

to save an encryption key which is used to sign all responses to the clients. Those interfaces are

implemented by classes which are also instantiated during the start-up and then injected to the

services. This way the service can be tested separately using mocks. The class PersistenceContext

inherits attributes from the database framework and exposes the database in an object-oriented

way.

 D6.1 – Reference Architecture of the Assurance Framework Toolkit

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement no 732319

Page 27 of 38

Figure 6: A Partial Example Implementation

5.4 Use Cases

In what follows a basic set use-cases that the toolkit (initially) supports are outlined. For each of the
four identified use-cases the relevant functionality in terms of a series of processes in time (i.e.,
Preconditions, Flow and Postconditions) is explained. The Toolkit has been designed (and at this
stage, partially developed) to efficiently support those use-cases but is not limited to them (see
Appendix A - Potential Extensions).

1. Data Entry

Preconditions

1. The user is logged in

2. The user has the appropriate rights

Flow

1. The user selects the type of item to add

2. The user provides the item details

Postconditions

1. The item is added to the database

 D6.1 – Reference Architecture of the Assurance Framework Toolkit

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement no 732319

Page 28 of 38

2. Data Edit

Preconditions

1. The user is logged in

2. The user has the appropriate rights

Flow

1. The user selects an item from the database

2. The user updates the item information

Postconditions

1. The new information is saved in the database

3. Security Target Definition

Preconditions

1. The user is logged in

2. The user has the appropriate rights

Flow

1. The user selects the product

2. The user defines the product

1. The user provides a Target Of Evaluation

2. The user provides Protection Profile conformities

3. The user provides the standard conformity

3. The user provides the definition details

1. The user provides the list of assets

1. The user provides the list of threats for each asset

2. The user provides the security objectives

3. The user provides the Security Function Requirements

4. The user provides the product functions

Postconditions

1. The Security Target is saved in the database

4. Product Specifications

Preconditions

1. The user is logged in

2. The user has the appropriate rights

 D6.1 – Reference Architecture of the Assurance Framework Toolkit

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement no 732319

Page 29 of 38

Flow

1. The user provides the product interfaces

1. The user links each interface to the Security Functional Requirements

2. The user links each interface to the Product Function

2. The user provides the product modules

1. The user links each module to the Security Functional Requirements

2. The user links each module to the Product Function

Postconditions

1. The product specifications are saved in the database

5.5 Entities

To support its basic functionality reflected in the aforementioned use-cases 3 and 4, the Toolkit

realizes a data modelling structure comprised by a set of entities and their relations. Those entities

seek to accurately represent the building blocks (or sequence of required inputs) for the compilation

of an ST in line with the SAFERtec Assurance framework (see [2] and the Deliverable D3.2).

The following diagram (Figure 7) represents the conceptual draft of the entities which will reside in

the database and will be exposed for editing to the users. The core object is the Product around

which all others will be centred. Most relationships are one-to-many.

 D6.1 – Reference Architecture of the Assurance Framework Toolkit

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement no 732319

Page 30 of 38

Figure 7: The main entities and their relations (E-R diagram) in the AFT database

With the above E-R modelling and relevant implementation the toolkit is enabled to assist the user

in defining a Security Target for the interested ‘Product’ in line with the SAFERtec Assurance

 D6.1 – Reference Architecture of the Assurance Framework Toolkit

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement no 732319

Page 31 of 38

Framework. However, further help may be provided to the AFT user extending the Toolkit’

functionality in order to cover other Security Evaluation Tasks. Such functionality will be supported

(Requirement 3.6 Extensibility) and partially implemented already by the SAFERtec project. At the

same time, extending the toolkit further will serve as an excellent opportunity for SAFERtec

exploitation activities.

6 Analysis of expected AFT features

In this section we provide some further insights on a set of expected AFT features that the proposed

architecture is enabled to support. Relevant examples and explanatory figures are provided where

applicable.

6.1 AFT Interoperability features

This is addressed in a dual manner. The SPA, which is the UI component of the toolkit, communicates

with the logic component of the toolkit via a JSON REST interface (see the upper part of Figure 8).

This interface can potentially be leveraged by other software instances (such as a mobile front end)

which need to communicate with the toolkit (as shown in the figure’s lower part).

Figure 8 Showcasing the AFT interoperability

Secondly, the toolkit communicates with the database (i.e., in the upper part of Figure 8 AFT

interacts with an SQL-compliant relational database management system) using standard SQL

commands. Excluding some optimizations, which are minor in volume, the language used is generic

which means that the specific database can be swapped with another one (see lower part) at the

expense of minimal effort.

 D6.1 – Reference Architecture of the Assurance Framework Toolkit

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement no 732319

Page 32 of 38

6.2 AFT Modularity features

Modularity refers to the property of software to be composed of different parts which interface

together through standard mechanisms. The AFT modularity is on the one hand reflected on a

‘horizontal distinction’ of its structure (see Figure 9) and on the other, on the usage of standard

interfaces (as explained in the previous paragraph).

AFT is composed of a UI editor (further organized into distinct logical parts) which communicates

with the main engine through a JSON interface. The main engine, which houses most of the program

logic interfaces with the database through an SQL interface.

Figure 9 AFT modularity along horizontal axes eases its deployment across machines (on the right)

Such a design eases the AFT deployment over (physically remote) machines that use their own user

interface and AFT main module while (potentially) accessing the same back-end database realizing

the AFT knowledge base (see the right part of the figure).

6.3 AFT Extensibility features

The AFT toolkit provides a basic data frame for the efficient support of Common Criteria/SAFERtec

evaluation of automotive products. In addition to those features (shown in Figure 10 as the AFT

editors) provided in the toolkit now, more can be added to support extra evaluation classes

(included either in Common Criteria or the SAFERtec assurance framework).

 D6.1 – Reference Architecture of the Assurance Framework Toolkit

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement no 732319

Page 33 of 38

Figure 10 AFT can support any Common Criteria evaluation class, if extended

Future extensions will leverage the models and data provided now in order to extend the toolkit

implementing functionalities that will facilitate other Common Criteria (or SAFERtec proposed e.g.,

AOP) evaluation classes. The available CC entities implemented in the toolkit can be leveraged by

tools for other Common Criteria classes besides the Security Target.

Additionally, the toolkit can be extended with different user interfaces, such as mobile ones, by

leveraging the REST API to connect to AFT.

6.4 AFT Computational Efficiency features

The nature of the AFT application allows for a variety of characteristics contributing to

computational efficiency. The first is that the single page application offloads all computation

pertaining to user interface rendering to the clients, alleviating the requirements for server

resources. A single-page application delivers the web page along with all functionality in the initial

browser request followed by small asynchronous requests to the web server to fetch (only) the

necessary page updates; that’s what improves performance compared to traditional server-side

rendering applications [9].

Another point that relates indirectly to computations is the fact that most of the communication

between the server and clients is lightweight resulting in smaller strain on network resources. Using

the XMLHttpRequests object reduces communication overhead compared to the PostBack process;

the latter originates from the client-side browser. The web page and its content are sent to the web

server for processing and subsequently the web server ‘posts the same page back’ to the client [14].

Finally, the AFT knowledge base (i.e., a custom database) is tailored to the application, meaning that

the transfer of information between the toolkit and the knowledge base is fast and efficient while

the computational needs of the database are minimised.

 D6.1 – Reference Architecture of the Assurance Framework Toolkit

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement no 732319

Page 34 of 38

7 Conclusions

 The software requirements and relevant architecture for the SAFERtec Assurance

Framework Toolkit detailed in the present document, serves as a solid foundation for the

development of a modular and extendable application. It has been designed to bear improvements

made with minimum effort and enabled to build further features upon-it. The technologies that have

been used are fairly well-established (in line with a number of relevant software standards) with

broad support and advanced capabilities supporting rapid development and easy deployment.

Importantly, the design has been closely followed by the relevant skeleton implementation that is

being continuously updated and checked against the SAFERtec framework development.

In this way, the introduced Toolkit can be efficiently implemented, tested and promoted for usage

by the relevant audience. More ambitiously, thanks to its welcome design characteristics it can be

easily maintained and extended even beyond the SAFERtec timeline.

 D6.1 – Reference Architecture of the Assurance Framework Toolkit

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement no 732319

Page 35 of 38

References

[1] ISO/IEC 15408 part 1/2/3:2005-Information technology, Security techniques, Evaluation criteria

for IT security,” Tech. Rep., v3.1, Release 5. [Online].

https://www.commoncriteriaportal.org/cc/

[2] P. Pantazopoulos et al., "Towards a Security Assurance Framework for Connected Vehicles," in

IEEE 19th International Symposium on A World of Wireless, Mobile and Multimedia Networks

(WoWMoM), Chania, 2018, pp. 01-06.

[3] ECMAScript Language Specification. [Online]. https://www.ecma-international.org/ecma-262/

[4] W3C Cascading Style Sheets. [Online]. https://www.w3.org/Style/CSS/Overview.en.html

[5] The JavaScript Object Notation (JSON) Data Interchange Format. [Online].

https://tools.ietf.org/html/rfc7159

[6] Scott Ambler. Technical (Non-Functional) Requirements: An Agile Introduction. [Online].

http://agilemodeling.com/artifacts/technicalRequirement.htm

[7] Data retention - European Commission. [Online]. https://ec.europa.eu/home-affairs/what-we-

do/policies/police-cooperation/information-exchange/data-retention_en

[8] Yunwu, and John J. Ponzo, Huang, "Dependency injection by static code generation.," U.S.

Patent No. 8,745,584. , june 3, 2014.

[9] Michael Alan, Kutner, "Server-side rendering," U.S. Patent No. 8,429,269. , April 23 , 2013.

[10] NPM. [Online]. https://www.npmjs.com/

[11] [Online]. https://dotnet.microsoft.com/download

[12] ANGULAR. [Online]. https://angular.io/guide/architecture

[13] Paul Reed, Jr., “Reference Architecture: The best of best practices” [Online]

https://www.ibm.com/developerworks/rational/library/2774.html

[14] What is PostBack http://net-informations.com/faq/asp/ispostback.htm

[15] HTTP and reverse proxy server [Online] https://nginx.org/en/

[16] Kestrel Server [Online] https://stackify.com/what-is-kestrel-web-server/

[17] PostgreSQL Open source relational database [Online] https://www.postgresql.org/

https://www.commoncriteriaportal.org/cc/
https://www.ecma-international.org/ecma-262/
https://www.w3.org/Style/CSS/Overview.en.html
https://tools.ietf.org/html/rfc7159
http://agilemodeling.com/artifacts/technicalRequirement.htm
https://ec.europa.eu/home-affairs/what-we-do/policies/police-cooperation/information-exchange/data-retention_en
https://ec.europa.eu/home-affairs/what-we-do/policies/police-cooperation/information-exchange/data-retention_en
https://www.npmjs.com/
https://dotnet.microsoft.com/download
https://angular.io/guide/architecture
https://urldefense.com/v3/__https:/www.ibm.com/developerworks/rational/library/2774.html__;!!DOxrgLBm!XxlePPvYMWUtRAylxOBlGTUnEV83q3ChPIFaEy0gg5fpcH7oAKZFO3gIi5jZ4M3EGM7IG9865w$
http://net-informations.com/faq/asp/ispostback.htm
https://nginx.org/en/
https://stackify.com/what-is-kestrel-web-server/
https://www.postgresql.org/

 D6.1 – Reference Architecture of the Assurance Framework Toolkit

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement no 732319

Page 36 of 38

Appendix A - Potential Extensions

The current implementation of the Toolkit involves the provision of support and means for an

automotive developer to facilitate the efficient compilation of an ST (or accordingly a PP) for his/her

product (ASE class corresponds to ST evaluation). The proposed architecture is extendable to include

functionalities that may further assist the realization of other evaluation tasks in line with the classes

introduced by CC:

• ADV (Specification). The aim is to help the developer provide the functional description

needed by the security evaluation process to relate the identified SFRs to the ToE’s

interfaces (TSFI), and then to the included modules.

• ATE (Functional tests). The aim is to help the developer justify how every test he/she is

performing correctly corresponds to checks for the TSFI and SFRs

Regarding ADV the Toolkit can be extended to include the different elements that compose the

functional architecture of the considered product (ToE). Typically, this corresponds to the

breakdown of the involved code (e.g., a classes-structure in case of object-oriented implementations

and a clear description of the various functionalities implemented in a configuration module, HMI

module, computation module, etc.). The developer needs to be able to document the expected

behaviour at a high level by describing the different input (data) types, the associated output and

the potential error messages. Some further details should be provided in terms of modules and the

way they communicate (i.e., interfaces) where justifications on the extent to which (e.g., partially,

fully or on a supporting level) they implement the identified SFRs, are needed.

Implementation-wise, a representation of the ToE’s modules is needed together with their

interconnection through interfaces to allow the (ToE) developer describe the functional architecture

of the product and specify whether and how the identified SFRs relate to those interfaces.

Regarding ATE, what is required for the developer is to describe the testing environment; required in

the ST in the TOE description part (that could be an independent entity in the model). In the ST what

is required is to describe every software and hardware required by the TOE to work, which actually

describe its environment to which the environment used for the tests in ATE should be conformant.

Then, for each test the developer has to describe, its goal, the initial set up including dependencies

with other tests (e.g. a signature verification requires first to run the tests that generated the

signature, etc.), the different steps, the expected results (e.g., files generated, messages excepted,

packet sent, etc.) and finally to specify which TSFI and module the certain test relates-to.

Implementation-wise, the ATE class can be covered by adding the test entity (and all needed

associated entities) in the toolkit architecture to accurately describe the aforementioned testing

functionality. Test entities should also be linked to interfaces and modules.

 D6.1 – Reference Architecture of the Assurance Framework Toolkit

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement no 732319

Page 37 of 38

Appendix B - Snapshots of the Toolkit Skeleton

Functionality Screen

Welcome screen

Entities

Edit an Entity

 D6.1 – Reference Architecture of the Assurance Framework Toolkit

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement no 732319

Page 38 of 38

Security Problem Definition

Addition of an Assumption

Security Targets in the Toolkit

