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Abstract—In this paper, the correlated double-Rayleigh dis-
tribution is introduced and analyzed. This distribution has been
found to provide an accurate statistical description of the vehicle-
to-vehicle multipath propagation. Novel infinite series expressions
for the joint probability density and the cumulative distribution
functions are derived, while the joint moments are also obtained
in closed form. Although the new statistical metrics can be
employed in a wide range of applications, this paper focuses
on the performance of dual-branch selection diversity receivers.
In this context, the outage probability (OP) and the average bit
error rate (ABER) of dual-branch selection diversity operating
over double-Rayleigh fading channels are analytically evaluated.
Moreover, an asymptotic analysis is also included, resulting to
simpler closed-form expressions for the OP and ABER. Finally,
the applicability of the analytical results were verified using the
measurements based WINNER2 models.

Index Terms- Bit error rate, correlated double-Rayleigh, outage
probability, selection diversity, vehicle-to-vehicle communica-
tions.

I. INTRODUCTION

The vehicle-to-vehicle (V2V) communication systems have
recently attracted the interest of the scientific community and
the industry, since they can directly be applied to intelligent
transportation systems (ITS). As a result, clear benefits are
offered, including road safety, traffic efficiency and comfort
to both drivers and passengers [1]. An important factor that is
directly related with these systems performance is the channel
model. In general, the channel model of these systems is
sufficiently different from the classical cellular channel [2].
Reasons for this include, the equal heights of the transmitter
(Tx) and the receiver (Rx), their movement, the surrounding
scatterers, the highly dynamic propagation conditions etc.
Since multipath channels can efficiently be described by using
proper statistical models, the performance of these systems
can be studied by selecting an appropriate distribution. A well
established channel distribution that has been widely used to
model non line-of-sight (NLoS) V2V channel conditions is
the double-Rayleigh process, e.g., [3]–[5], which represents a
special case of the multiple scattering radio channel. Based on
the multiple scattering modeling, several studies have analyzed
the performance of inter-vehicular communication systems
that support diversity reception [6]–[8].

Regardless of the channel model that has been adopted, an
important factor that seriously affects the system performance
is the existence of correlation among the diversity branches.
In general, such signal correlation exists in cases where the
distance between the diversity antennas is small. The open
research literature concerning correlated distributions is quite
extensive, e.g., [9], [10]. In addition, depending upon the

antenna placement in the vehicle, e.g., at the mirror or the
signs, it will not be surprising that correlation effects will
also be present in V2V communication scenarios. However, to
the best of the authors’ knowledge, bivariate double-Rayleigh
distribution and the performance of multi-antenna V2V com-
munication systems over such channels is not available in the
open technical literature and thus is the subject of the current
work.

Motivated by this important limitation, in this paper, we
study for the first time the influence of the correlation effects in
a V2V communication scenario. To this aim, we first introduce
the bivariate double-Rayleigh distribution. In particular, we
present novel expressions for important statistical properties
of the new distribution, such as the joint probability density
function (PDF) and cumulative distribution function (CDF)
as well as the joint moments. The new distribution can be
applied to different research fields. However, in this work,
we focus on a diversity reception scenario. More specifically,
we investigate the performance of a dual-branch selection
diversity (SD) operating in a bivariate double-Rayleigh fading
channels environment.

The rest of the paper is organized as follows. Section II
contains important statistical metrics of the bivariate double-
Rayleigh distribution. In Section III, the performance analysis
of a SD Rx is performed in terms of the outage probability
(OP), average bit error rate (ABER), while an asymptotic
analysis is also included. Section IV presents some numerical
results and Section V includes concluding remarks.

II. CORRELATED DOUBLE-RAYLEIGH STATISTICS

Let Xi, (i = 1, 2, 3) denoting the envelopes of zero mean
complex Gaussian random variables (RV)s with marginal PDF
given by [11, eq. (2.6)]

fXi(x) =
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where Ωi is the mean square value. Moreover, the double-
Rayleigh RV is a product of two independent Rayleigh RVs
[3]. In this context, let Zj , with j = 1, 2, be defined as

Z1 =X1 ×X2

Z2 =X1 ×X3.
(2)

This paper is based on the fact that X2 and X3 are correlated
Rayleigh RVs with joint PDF given by [11, eq. (6.2)]
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where Iv(·) is the modified Bessel function of the
first kind and order v [12, eq. (8.406/1)] and ρ =
cov
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)
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coefficient (0 ≤ ρ < 1) [11]. Since Z1 and Z2 constitute
products of two RVs, their joint PDF is given by
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Substituting (1) and (3) in (4), employing the infinite series
representation of the Bessel function, [12, eq. (8.445)], making
a change of variables and using [12, eq. (3.471/9)] yields the
following expressions for the joint PDF of Z1 and Z2
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where Kv(·) is the modified Bessel function of the second
kind and order v [12, eq. (8.432/1)].

Assuming identical mean square values, i.e., Ωi = Ω, the
joint CDF of Z1, Z2 is given in (6) (shown at the top of the
next page). In (6),
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Moreover, ξ =
√
1− ρΩ, Gm,n

p,q [·|·] denotes the Meijer’s G-
function [12, eq. (9.301)], 2F1(·) is the Gauss hypergeometric
function [12, eq. (9.100)], Γ (·) is the Gamma function [12,
eq. (8.310/1)] and ψ(·) is the Euler’s psi function [12, eq.
(8.360/1)]. The proof of (6) is given in the Appendix.

In addition, using (5) in the definition of the joint moments
µ(n1, n2) = E ⟨Zn1

1 Zn2
2 ⟩, where E < · > denotes expectation,

making a change of variables of the form x = y2, using first
[13, eq. (2.16.3/8)], then [12, eq. (6.561/16)] as well as the
definition of the Gauss hypergeometric function, yields the
following closed-form expression for the joint moments
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It should be noted that to the best of the authors knowledge, all
the previously derived expressions for the correlated double-
Rayleigh distribution have not been reported in the past.

III. SD RECEIVERS PERFORMANCE

In principle, the previous derived expressions can be used
in various research scenarios, where bivariate double-Rayleigh

statistics is necessary. However, the research is focused on di-
versity reception scenario. Thus, let us consider a single input
multiple output (SIMO) communication system, supporting
SD Rx, operating over flat fading, which is modeled by the
previously discussed distribution.

The instantaneous signal-to-noise (SNR) at the ith branch,
with i = 1, 2, is defined as

γi = Z2
i

Es

N0
(8)

with Es denoting the transmitted symbol energy and N0 the
power spectral density of the additive white Gaussian noise
(AWGN) channel. The corresponding average SNR is given
by γi = E

⟨
Z2
i

⟩
Es/N0. Additionally, since the instantaneous

SNR at the output of the SD Rx is γsd = max{γ1, γ2},
its CDF can be expressed as Fγsd

(γ) = Fγ1,γ2(γ, γ). Using
(6), assuming γi = γ and based on the information provided
above, it is not difficult to recognize that the CDF of γsd is
given by
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Next, based on the analytical expression for the CDF of the
output SNR, the performance will be investigated using the
OP and the ABER.

A. Outage Probability

OP is defined as the probability that the SNR falls below a
predetermined threshold γth and is given by Pout = Fγsd

(γth).
Asymptotic Analysis: In order to clearly understand important
system-design parameters, we study the asymptotic OP. This
approach help us to quantify the amount of performance
variations, which are due to the fading effects as well as to
the Rx’s architecture. For higher mean square values of Ωi,
the PDF of Xi can be closely approximated by fXi(x) ≈ 2x

Ωi
.

Based on this approximated expression, and by following a
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similar procedure as the one presented in the Appendix, the
CDF of γsd simplifies to the following expression
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(γ) ≈ γ
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where pFq(·) is the generalized hypergeometric function
[12, eq. (9.14/1)]. Moreover, by employing [14, eqs.
(07.23.17.0056.01 and 07.23.03.0025.01)], after some mathe-
matical simplifications and using [14, eq. (01.04.02.0001.01)],
yields the following closed-form expression
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From (11), it is obvious that ρ will not affect the diversity
order, which is always 2, but only the coding gain.

B. Average Bit Error Probability

Using the CDF-based approach the ABER is given by [15]
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e(γ) denotes the negative derivative of the condi-

tional error probability. For example, assuming differential
binary phase shift keying (DBPSK) modulation, −P ′

e(γ) =
αβ exp(−βγ), where α = 1/2, β = 1 [15]. Substituting
(9) in (12), employing [13, eq. (2.6.21/2)] and after some
mathematical manipulations yields
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Here, it is important to note that the derivation of (13), and thus
the investigation of the ABER performance, is only possible

TABLE I
MINIMUM NUMBER OF TERMS OF (9) REQUIRED FOR

OBTAINING ACCURACY BETTER THAN ± 10−5 .

γ = 5dB γ = 15dB

γ
1
5

10

ρ = 0.2 ρ = 0.7
3 7
6 8
9 11

ρ = 0.2 ρ = 0.7
1 5
1 7
2 8

by using the analytical approach presented in Section II and
the CDF expression given in (9).
Asymptotic Analysis: For the higher mean square values of
Ωi, substituting (11) in (12), and after some mathematics, the
following convenient closed-form expression for the ABER
can be derived

Pb ≈
1

γ2

[
ln(2) + ln

(
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√
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)
− ln(1− ρ)

2

]
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IV. NUMERICAL RESULTS

In this section, various numerical performance evaluation
results will be presented. Firstly, the rate of convergence of
the infinite series given in (9) has been investigated. More
specifically, the minimum number of terms, which guarantees
accuracy better than ± 10−5 is presented in Table I for differ-
ent values of γ, ρ and γ. It is clear from these results that only
a relatively small number of terms is necessary to achieve an
excellent accuracy, while this number is significantly smaller
than the corresponding ones for other fading scenarios, e.g.,
[16]. Moreover, the number of terms increases as γ, ρ increase
as well as with the decrease of γ. It is also noted that similar
results with Table I were also obtained by using the other
infinite series expressions derived in this work, e.g., (13).

In order to evaluate the applicability of the analytical results
in real-world conditions, the WINNER2 channel models were
used [17]. The objective was to verify that the extracted dis-
tributions are representative for SIMO— propagation through
keyhole channels using measurement-based models. In key-
hole channels, the radio environment in the proximity of
both Tx and Rx contains multiple scatterers, while the prop-
agation beyond Tx-Rx proximity and between them is clear
with absence of complex propagation phenomena. In order
to compose a keyhole with WINNER2, bad urban radio
channels (NLoS B2 WINNER) were considered in Tx and Rx



Fig. 1. Keyhole channel as simulated using WINNER2.

Fig. 2. Histogram using simulation vs. theoretical PDF for Z1 and Z2.

proximity, while in-between them rural D1 LoS radio channel
was assumed. Moreover, the following assumptions were also
made: propagation at 5.9GHz (ITS systems), a single-antenna
dipole Tx, two closely spaced dipole antennas for the Rx with
interelement distance λ/6 (λ is the wavelength). Due to strong
mutual coupling of the array elements, correlation between the
two Rx signals is expected. It is noted that transition between
radio environments is not directly supported by WINNER2.
Therefore, two virtual relays were considered in the borders
of the propagation environments as seen in Fig. 1. The virtual
relays are using directional antennas (10o aperture), since only
specific propagation paths in the direction of the Tx-Rx link
pass through the keyhole achieving Tx-Rx connectivity.

During simulations, 40,000 WINNER2 narrowband keyhole
channels were produced, properly modified to support mobility
for both Tx and Rx. Due to the closely spaced elements of
the array, the correlation coefficient in the Rx B2 channel was
set 0.85. This corresponds to ρ = (0.85)2 as it is defined
after (3). In Fig. 2, histograms for the normalized Rx signal
amplitude for the two antennas as produced by the WINNER2
vs. the marginal PDF for the keyhole channels as calculated
by (5) are presented. It is evident that the modeled channels
can be accurately fitted by the theoretical PDF. Moreover,
the correlation between the two WINNER2 simulated Tx-Rx
channels was calculated and the result was compared with
the theoretical one computed by (7). Simulations show that
the presented theoretical analysis can be used to successfully
characterize keyhole radio channels for SIMO systems.

In Fig. 3, using (9) and assuming γ = 9dB, the OP of
dual-branch SD is plotted as a function of the correlation
coefficient ρ, for different values of the outage threshold, γth.
It is depicted that as ρ increases, the performance decreases.
This decrease is higher for large values of ρ, i.e., ρ ≥ 0.8,
where the coding gain rapidly minimizes. Moreover, the
performance improves with a decrease on γth. In the same
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Fig. 4. ABER vs γ, for different values of ρ.

figure, the asymptotic OP, obtained using (11), is also included.
It is shown that the difference between the exact and the
approximated values decreases with the decrease of γth. In
Fig. 4, using (13), the ABER is plotted as a function of the
average input SNR γ, for different values of the correlation
coefficient ρ. Moreover, based on (14), the asymptotic ABER
is also included. It is depicted that for lower values of ρ
the performance is better. It is important to note that the
asymptotic curves approximate quite well the exact ones even
for moderate values of the average SNR, i.e., γ ≥ 10dB, while
this approximation improves for lower values of ρ. Finally, it
is noted that the computer simulations performance results,
which are also included in all figures, verify in all cases the
validity of the proposed theoretical approach.

V. CONCLUSIONS

In this paper, the correlated double-Rayleigh distribution is
introduced and studied. This model has been widely adopted
to describe the V2V multipaths propagation. For this new



distribution, we present novel expressions for important sta-
tistical properties, such as the joint PDF, CDF and moments.
Although, the new distribution can be applied to different
research fields, in this work, we focus on a diversity reception
scenario. In particular, we study the performance of a dual-
branch SD operating in correlated double-Rayleigh fading
channels. It is shown that higher values of the correlation
coefficient result to an important reduction to the coding gain
and thus the system’s performance.

APPENDIX
PROOF FOR EQUATION (6)

Substituting (5) in the definition of the joint CDF, the
following integral expressions need to be solved
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In (A-1), I1 can be rewritten as
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By employing [18, eqs. (10 and 28)] as well as using [12,
eq. (9.31)], I1a can be evaluated as
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For evaluating I1b , first we employ [14, eqs. (07.23.16.0001.01
and 07.23.03.0231.01)], then we use [12, eq. (2.729/1)] as well
as [13, eq. (1.2.4/3)] and after some mathematical manipula-
tions yields the following expression
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For evaluating I2, we employ the binomial identity and
integration by parts, then [18, eqs. (10 and 26)] are used and
after a few mathematics yields the following expression
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Finally, the solution of I3 is given by

I3 =

p∑
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Based on the previous derived analytical expressions and after
some analytical manipulations, (6) is finally derived.

ACKNOWLEDGEMENT

This research has received funding from the European
Union’s Horizon 2020 research and innovation programme
under “ROADART” Grant Agreement No 636565.

REFERENCES

[1] G. Rafiq et al., “Whats new in intelligent transportation systems:
An overview of European projects and initiatives,” IEEE Vehicular
Technology Magazine, vol. 8, no. 4, pp. 45–69, 2013.

[2] A. F. Molisch, F. Tufvesson, J. Karedal, and C. F. Mecklenbräuker,
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