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Abstract—The bivariate double-Rayleigh distribution with
non-identically distributed parameters is introduced and ana-
lyzed. Novel series expressions for the joint probability density,
cumulative distribution, and the moments are derived. Based on
this new distribution, a multichannel communication scenario
is studied, where correlation exists between the actual channel
and its corresponding estimate, under time varying channel
assumption. In this context, the outage performance of the system
under consideration is analytically evaluated, while for higher
values of the average signal-to-noise ratio, closed-form results
are derived. Finally, an analysis for total outage probability in
varying-correlation conditions is also provided.

Index Terms—Antenna selection, correlated (bivariate) double-
Rayleigh distribution, outage probability, outdated CSI.

I. INTRODUCTION

Double-Rayleigh (DR) distribution has been used for mod-
eling double-scattering propagation conditions, which arise in
cases where both the transmitter and the receiver are in motion,
with their local scatterers be separated by a large distance [1].
This is why DR has been widely adopted in vehicle-to-vehicle
(V2V) communications for modeling the non line-of-sight
channel conditions. Based on this physically justified fading
model, the performance of various communications systems
has been analyzed, including transmit/receive diversity [2],
[3] and cooperative/cognitive relaying [4]–[6]. For example, in
[2], the channel capacity of a equal gain combiner in a V2V
DR fading environment is studied. In [4], the performance
of a cooperative diversity scheme with relay selection over
cascaded Rayleigh fading has been investigated. However, a
common assumption is all these works is that perfect channel
state information (CSI) is available at the system and thus
independent DR processes have been employed. In general, in
contrast to other correlated fading models, e.g., Nakagami-m,
Weibull [7], [8], the correlated DR distribution has not been
thoroughly studied in the open technical literature.

In this letter, we present novel analytical expressions for
the bivariate DR distribution, with non necessarily identical
parameters and different correlation coefficients for the consti-
tute distributions. In this context, new expressions for the joint
probability density function (PDF), cumulative distribution
function (CDF), and the moments are obtained. Capitalizing
on the joint CDF, an application example on V2V communi-
cations has been presented. More specifically, the impact of
outdated CSI on a multichannel system has been quantified.
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Similar investigations have been several times reported in the
past for different scenarios, e.g., [9], [10]. However, previous
works are characterized by cellular propagation conditions.
Therefore, to the best of the authors’ knowledge, the influence
of outdated CSI on multichannel communication systems,
operating in V2V environment, has not been investigated in
the past and thus motivated this work.

II. THE BIVARIATE DOUBLE RAYLEIGH-DISTRIBUTION

Let Z1, Z2 denote two DR envelopes with marginal PDF
given by [11]
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parameters, and K0(·) is the modified Bessel function of the
second kind and 0th order [12, eq. (8.432/1)]. Since the DR
envelope is defined as the product of two independent Rayleigh
envelopes, i.e., Xi, with i ∈ {1, 2, 3, 4}, Zjs are expressed as

Z1 = X1 ×X2, Z2 = X3 ×X4. (2)

Next, X1 and X2 are considered to be correlated with X3 and
X4, respectively, with joint PDF given by [7, eq. (6.2)]
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where Iv(·) is the modified Bessel function of the first kind
and order v [12, eq. (8.406/1)] and (0 ≤ ρj < 1) is the
correlation coefficient of the underlying complex Gaussian
random variables (RV)s. Based on (2), the joint PDF of Z1

and Z2 is given by
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Substituting (3) in (4), employing the infinite series representa-
tion of the Bessel functions, [12, eq. (8.445)], making a change
of variables and using [12, eq. (3.471/9)], yields the following
expressions for the joint PDF of Z1 and Z2
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where ρ̂12 = (1− ρ21)(1− ρ22), σ̂i-j = σiσi+1 · · ·σj−1σj .
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The joint CDF of Z1 and Z2 is defined as FZ1,Z2(x, y) ,∫ x

0

∫ y

0
fZ1,Z2(z, w)dzdw. Substituting (5) in this definition,

using the Meijer G-function representation for the Bessel
function, i.e., [13, eq. (14)], and using [13, eq. (26)], the
following generic expression for the joint CDF is obtained
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where αi,j = i+j
2 , βi,j = i−j

2 , and Gm,n
p,q [·|·] denotes the

Meijer’s G-function [12, eq. (9.301)]. It is noted that Meijer G-
functions are built-in function in many mathematical software
packages, e.g., Mathematica, Maple, and thus can be easily
evaluated. Moreover, substituting (5) in the definition of the
joint moments µZ1,Z2(n1, n2) , E⟨Zn1

1 Zn2
2 ⟩, with E⟨·⟩

denoting expectation, and using [12, eq. (6.561/16)], yields
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where Γ(·) denotes the Gamma function [12, eq. (8.310/1)].
In addition, using the definition of the Gauss hypergeomet-
ric function [12, eq. (9.100)] and after some mathematical
manipulation, the following closed-form expression for (7) is
extracted
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with 2F1(·) denoting the Gauss hypergeometric function. The
correlation coefficient between Z1 and Z2 is defined as ρ ,
cov (Z1, Z2) /

√
var (Z1) var (Z2), where cov(·) and var(·) is

the covariance and variance, respectively. Using (8) and [1,
eq. (48)], ρ can be expressed as
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It is noted that to the best of authors’ knowledge all the pre-
vious derived analytical results have never been reported in the
past. Moreover, the infinite series expressions presented above,
converge for all values with practical interest, for the system’s
and channel’s model parameters, using relatively small number
of terms and in less time as compared to alternative techniques,
e.g., by employing numerical integration, as it will depicted
in Section IV. In addition, they can be also used for further
analytical purposes, as it will be shown in the next section.

III. MULTICHANNEL SYSTEM OUTAGE PROBABILITY

In general, the analytical results derived in Section II can be
used in various research fields where bivariate DR statistic is
necessary. Here, the research focuses on a multichannel system
operating in a V2V communication environment (modeled

by the DR distribution) in the presence of additive white
Gaussian noise (AWGN). In the scheme under consideration,
an antenna selection mechanism has been adopted, which can
be implemented at either the transmitter or the receiver side
[14]. In both cases, the system selects the antenna that provides
the highest instantaneous channel gain, a decision that is based
on the estimation of the CSI. In this context, the channel gain
Zj that is available at the selection instance, due to the fast
time varying nature of the medium, is different from the actual
channel gain, Ẑj , at the transmission/reception instance [15].
The discrepancy between the channel gains is measured by the
correlation coefficient ρ, defined in (9), and thus it depends
on ρ1 and ρ2. In addition, ρ1, ρ2 depend on the maximum
Doppler frequency fDj and the time delay due to the CSI
feedback TDj .

In this case, the instantaneous signal-to-noise (SNR) at the
jth diversity branch, with j = 1, 2, is defined as γj = |Zj |2 Es

N0

with Es denoting the transmitted symbol energy and N0

noise variance. The corresponding average SNR is given by
γj = E

⟨
|Zj |2

⟩
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N0
. Assuming independent and identically

distributed (i.i.d.) fading conditions, i.e., γj = γ, the CDF of
the actual SNR of the selected branch at the data transmission
instance is expressed as
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The proof for (10) is given in the Appendix. Based on the
analytical expression for the CDF of the output SNR in (10),
the performance of the system under consideration can be
evaluated using the criterion of outage probability (OP) that
is given by Pout = Fγout(γth).

A. Asymptotic Analysis

The exact results presented previously do not provide a
clear physical insight of the system’s performance. As such,
the main concern is to derive an asymptotic closed-form
expression for Fγout(γ). Therefore, here, we focus on the high
SNR regime to quantify the amount of performance variations,
which are due to the correlation as well as to the receiver’s
architecture. In this context, assuming i.i.d. conditions, higher
values of γ and using [16, eq. (03.02.06.0004.02)], the Bessel
function in (3) can be approximated as Iv (z) ≈ 1
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z
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.

Using this approximated expression and the approach pre-
sented in Appendix, the following closed-form asymptotic
expression for the CDF of γout is obtained
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where Φ(., ., .) denotes the Lerch function [12, eq. (9.55)].
Moreover, assuming differential binary phase shift keying,
the average bit error probability can be evaluated as Pb =
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TABLE I
MINIMUM NUMBER OF TERMS OF (10) REQUIRED FOR

OBTAINING ACCURACY BETTER THAN ± 10−5 .

γ = 10dB γ = 20dB

γ(dB)
0
5
10

ρj = 0.1 ρj = 0.7
2 11
2 13
2 15

ρj = 0.2 ρj = 0.7
1 8
1 10
2 12
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exp(−γ)Fγout(γ)dγ. Substituting, (11) in this inte-
gral and employing [12, eq. (6.631/3)], the following approx-
imating expression for the ABEP is obtained
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where Wµ,ν(·) is the Whittaker function [12, eq. (9.220/4)].

B. Varying Correlation for Realistic Modeling

The previous analysis was based on deterministic values of
ρj . However, in real-world situations, the vehicles (relative)
velocity, i.e., vj = fDjλ, and/or the time of arrival between
data transmissions, i.e., TDj , may continuously change in
a random manner. Under these circumstances, ρjs will also
randomly vary. Therefore, it is reasonable to assume that cor-
relation coefficients ρjs are given by ρj = g

(
fDj , TDj

)
, e.g.,

assuming the classic Jakes spectrum ρj = J0
(
2πfDjTDj

)
,

where Jv(·) is the Bessel function of the first kind [12,
eq. (8.402)]. More specifically, we consider the case where
TDj s are deterministic and thus the variations of ρjs de-
pend only on fDj . The following analysis holds also in
case where TDj s are stochastic and fDj s deterministic. Un-
der these assumptions, (10) expresses the conditional CDF
Fγout (γ|ρ1 = r1, ρ2 = r2). In this context, the total OP in-
volves the solution of the following integral:

Fγouttot
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× fρ1 (r1) fρ2 (r2) dr1dr2.
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A generic analytical calculation of (13) is unfeasible. An
alternative approach is to approximate (13), with proper
change of variables from ρj to fDj and discretization of the
Doppler domain into M equally spaced intervals resulting to
the following formula

Fγouttot
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where fDj (m) is an M -point uniform sampling of the
Doppler spread field, ffDj

(x) is the PDF of fDj , and A =∏2
j=1
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m=1 ffDj

(
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)
.

IV. NUMERICAL RESULTS
Firstly, the rate of convergence of the infinite series given

in (10) has been investigated. More specifically, the mini-
mum number of terms, which guarantees accuracy better than
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±10−5 is presented in Table I for different values of γ, γ, and
ρj = ρ1 = ρ2. From this table it is clear that a relatively small
number of terms is necessary to achieve an excellent accuracy.
Moreover, this number of terms increases as γ and/or ρj
increase as well as with the decrease of γ. In Fig. 1, assuming
γ = 15dB and γth = 3dB, a contour plot of the OP is depicted
as a function of the two temporal correlation coefficients ρ1
and ρ2. It is noted that the antennas are spatially uncorrelated.
In this plot, it is shown that as the correlation coefficients
increase, e.g., feedback delay diminishes in a transmit antenna
selection scenario, the OP improves with an increased rate,
while the impact of ρ1 and ρ2 to the system’s performance is
identical. In the same figure, it is also depicted the probability
of correct decision, which is plotted as a function of ρjs and
obtained via simulations. From this subfigure, it is evident that
for lower values of ρj , the antenna selection becomes random,
while clear diversity gain is expected only for ρj > 0.8. In
Fig. 2, assuming γth = 5dB, the OP is plotted as a function
of the average input SNR for different values of ρ1, ρ2. It
is also shown that the performance improves as ρj increase.
Moreover, in the same figure, the close agreement between the
exact and the asymptotic (high SNR) OP is also depicted. It
is noted that the approximation improves for lower values of
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ρjs. In addition, for comparison purposes, the corresponding
performance of a single (without diversity) receiver is also
depicted. It is shown that for lower values of ρjs, i.e., fast
time varying channel, the diversity gain is lost. In this figure,
computer simulations performance results are also included,
verifying in all cases the validity of the proposed theoretical
approach. In Fig. 3, assuming that the velocity of both ends of
the link is a zero-mean Gaussian RV with σ = 20 m/sec (72
km/h), the total OP is calculated through simulation. It is noted
that the distribution of ρjs for the specific case is presented as
a histogram in the subfigure. In addition, the approximation of
(14) as well as the OP from (10), where the mean values of
ρjs are used, are also presented. It is interesting to note that
(10) represents an upper bound of the total OP shown in (13),
while the approximation given in (14) is quite close to (13).

V. CONCLUSIONS

Despite the wide adoption of the DR distribution for mod-
eling V2V communication scenarios, correlated statistics have
never been reported for this model. In this paper, the bivariate
DR distribution with arbitrary correlations and non identical
parameters was introduced and used to study the impact of
outdated CSI on the OP performance of a V2V multichannel
communication system. It was shown that the performance
improves with the increase of the correlation between the
channel gains at the selection and the data reception instances.

APPENDIX

In this Appendix, a proof for the derivation of (10) is
presented. The CDF of the actual received SNR of the selected
branch at the data transmission instance is expressed as
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In (A-2), for evaluating both I1 as well as I3, the Meijer G-
function representation of the Bessel functions is employed,
i.e., [13, eq. (14)]. Based on this representation, and with the
aid of [13, eq. (26)] and [13, eq. (21)], the solutions of I1 and
I3 are given in (1) and (3) of (A-2), respectively. Moreover,
(2) holds due to [16, eq. (03.04.21.0116.01)]. Therefore, based
on all these expressions, (10) is finally derived.
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