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The probability density function and cumulative distribution function
of the received signal-to-noise ratio (SNR) and the received signal-
to-interference ratio (SIR), for interference-limited systems is
derived, at the nth nearest neighbour node in a Poisson point process
wireless random network. The analytical expressions are given in
terms of the Meijer G-function and reveal the impact of node spatial
density, transmit power, interference power, and path-loss exponent
on the connectivity probability of a broadcast wireless transmission.
The analytical results are validated with computer simulation.
Introduction: Many works studied distance distributions in random infi-
nite and finite networks [1–3]. A model that is usually used to character-
ise the spatial distribution of these nodes is the Poisson point process
(PPP). For example, the work in [4] studied the connectivity probability
for vehicular-to-vehicular (V2V) and vehicular-to-infrastructure com-
munication scenarios under the assumption that vehicles are distributed
on the road following a Poisson distribution. For a random network with
node distribution based on the PPP model and the transmitter located at
the origin, the distance between this node and its nth nearest neighbour
is a random variable that follows the generalised Gamma distribution
[1, 5]. Therefore, for constant transmit power and a power-law path-loss
model, the received average signal-to-noise ratio (SNR) or the average
received signal-to-interference ratio (SIR), for the case of interference-
limited systems, are random variables.

In this Letter, we consider the combined effect of path-loss and
Nakagami-m fading on the outage probability of the nth nearest neigh-
bour node. Closed-form expressions for the probability density function
(PDF) and cumulative distribution function (CDF) of the received SNR
or received SIR at the nth nearest neighbour are derived. The analytical
results can be utilised to determine the probability of correct detection at
the nth nearest neighbour node in a PPP wireless network with different
node densities.

Signal to noise analysis: The Poisson process is suitable for modelling
uniformly random networks. The Euclidean distance between a point at
the origin and its nth nearest neighbour, Rn, is distributed according to
the generalised Gamma distribution [1]:
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and G(n) is the gamma function evaluated at n. In addition, if we want to
consider only neighbouring nodes that lie within a sector with opening
angle f, this simply corresponds to a change of the volume from an
m-ball to an m-sector (with opening angle f) whose volume is
cf,mrm. Therefore, the PDF of the distance to the nth nearest neighbour
in a sector f is given by replacing cm by cf,m in (2). For m = 1, 2, 3, we
have cf,1 = 1, cf,2 = f, and cf,3 = (2p/3)(1− cos (f)), respectively.
Moreover, it is assumed that the transmitted signal undergoes
small-scale Nakagami-m fading. The corresponding instantaneous
received SNR, X, follows the gamma distribution with PDF
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where ms and Vs are the distribution’s shaping and scaling parameters.
When the path-loss follows the decaying power law, the average SNR
Vs at distance r is given by

Vs = PtKr
−a/N = P̃tr

−a (4)

where Pt is the transmit power, K is a constant that depends on the
antenna characteristics and free-space path-loss up to distance
r0 = 1m, r is a random variable which follows the distribution in (1),
positionLtd, Salisbury
a is the path-loss exponent with values in the range [2, 6], N is the
receiver noise power, and P̃t is the transmit SNR. The PDF of the
received SNR at the nth nearest neighbour is then given by
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The previous integral can be solved using the following result, which is
derived from [6, Equations (11) and (21)] as
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where b1 and b2 are integers, G(·) is the Meijer’s G-function and
D m, n( ) = n/m, . . . , ((n+ m− 1)/m). It is noted that Meijer
G-functions are built-in functions in many mathematical software
packages, e.g. Mathematica, Maple, and thus can be directly evaluated.
For path-loss exponent expressed as a = ℓ/k, where ℓ and k are
integers, based on the solution given in (6) with b1 = ℓ and b2 = km,
the PDF of the SNR at the nth nearest neighbour node is given in
closed form as
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Moreover, using [6, eq. (26)], the corresponding CDF of the received
SNR is given in closed form as
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Signal to interference analysis: Assuming that the received signal is
subject to interference, the received SIR for an interference-limited
system is given by

gout =
X

Y
(9)

where Y denotes the instantaneous received interference-to-noise ratio
(INR). Assuming a single dominant Nakagami-m interferer, the PDF
of gout is given by
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whereVI is the average INR andmI is the Nakagami fading parameter of
the interference signal. Based on (10), using [6, eqs. (10), (11) and (21)]
the PDF of the SIR at the nth nearest neighbour is given by
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Moreover, using [6, eq. (26)], the corresponding CDF of the received
SIR is given in closed form as
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Fig. 1 Probability of connectivity based on SNR versus neighbour index n

Numerical results: The probability of coverage or probability of
connectivity for the nth nearest neighbour can be defined as the comp-
lementary CDF of the received SNR as

Pr Xn . gth
{ } = 1− FXn gth

( )
(13)

which is the probability that the SNR at the nth nearest neighbour is
greater than the target SNR gth.

For all the numerical results, we consider a 2D case and a sector of
90° angle, by setting m = 2, f = p/4 and cf,2 = f. This setting could
model a V2V communications scenario where a car broadcasts infor-
mation to the vehicles behind it. To determine the coverage area of
the transmitter, the average distance to the nth nearest neighbour, is
given by [1]

E dn[ ] = G n+ 12( )
G n( ) ����

lw
√ (14)

This distance determines how far a node can transmit given a minimum
required SNR at the receiver, i.e. the length of the longest possible hop
for a given transmit power. For example, for PPP density l = 0.001,
the average distance to neighbours n = {1,10,20} obtained from (14)
with m = 2 and f = p/4 are E dn[ ] = {32, 111, 158}m, whereas for
l = 0.01 we obtain E dn[ ] = {10, 35, 50}m.
Fig. 1 plots the probability of connectivity versus the neighbour index
n for PPP density l = {1, 5, 10} · 10−3, assuming P̃t = 70 dB, ms = 2,
path-loss exponents a = 3 (ℓ = 3, k = 1) and a = 3.5 (ℓ = 7, k = 2),
and gth = 5 dB. The figure shows the impact of path-loss exponent a
and PPP density l on the probability of connectivity to the nth
nearest neighbour. We note that assuming N =−105 dBm and K =
−35 dB, P̃t = 70 dB corresponds to Pt = 70+ 35− 105 = 0 dBm.

In Fig. 2 we plot the probability of connectivity versus neighbour
index n for an interference-limited system, that is, for a system where
connectivity is based on the SIR association criterion. We assume the
same system parameters with the previous plot but also consider
mI = 1 and INR VI = 10 dB for the interference signal. The plot
shows the impact of interference on the probability that the nth
nearest neighbour will successfully detect the transmission from the
source node located at the origin.
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Fig. 2 Probability of connectivity based on SIR versus neighbour index n

Conclusion: In this Letter, we derived closed-form expressions for the
PDF and CDF of the received SNR and received SIR at the nth nearest
neighbour in a PPP random wireless network. The analytical
expressions were used to investigate the impact of node density, transmit
power, path-loss exponent, and association threshold on the probability
that the nth nearest neighbour to a source node can successfully decode a
transmitted packet.
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